THE POLYNOMIAL NUMERICAL INDEX OF A BANACH SPACE
نویسندگان
چکیده
منابع مشابه
Two-dimensional Banach Spaces with Polynomial Numerical Index Zero
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
متن کاملThe Daugavetian Index of a Banach Space
Given an infinite-dimensional Banach space X, we introduce the daugavetian index of X , daug (X), as the greatest constant m > 0 such that kId+ Tk > 1 +mkTk for all T ∈ K(X). We givetwo characterizations of this index and we estimate it in some examples. We show that the daugavetian index of a c0-, l1or l∞-sum of Banach spaces is the infimum index of the summands. Finally, we calculate the daug...
متن کامل. FA ] 1 A ug 2 00 7 BANACH SPACES WITH POLYNOMIAL NUMERICAL INDEX 1
We characterize Banach spaces with polynomial numerical index 1 when they have the Radon-Nikod´ym property. The holomorphic numerical index is introduced and the characterization of the Banach space with holomorphic numerical index 1 is obtained when it has the Radon-Nikod´ym property.
متن کاملConcerning the Bourgain `1 Index of a Banach Space
A well known argument of James yields that if a Banach space X contains `1 ’s uniformly, then X contains `1 ’s almost isometrically. In the first half of the paper we extend this idea to the ordinal `1-indices of Bourgain. In the second half we use our results to calculate the `1-index of certain Banach spaces. Furthermore we show that the `1-index of a separable Banach space not containing `1 ...
متن کاملReal Banach Spaces with Numerical Index 1
We show that an infinite-dimensional real Banach space with numerical index 1 satisfying the Radon– Nikodỳm property contains l1. It follows that a reflexive or quasi-reflexive real Banach space cannot be re-normed to have numerical index 1, unless it is finite-dimensional.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2006
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091502000810